Global Energy: Past, Present, and Future

Overview

Global Energy: Past, Present, and the Future offers an introduction to a wide range of topics related to energy. This interdisciplinary cluster applies approaches and methods from engineering, materials science, and social sciences including economics and history, to solve energy problems.

It studies the history of energy use and power generation by humans from ancient times to today, the development of modern thermal sciences, and the effects of different energy sources and technologies on society, economy, and military. The cluster discusses the present state-of-the-art of modern energy systems, using both renewable and non-renewable energy sources, and allows students to work on their own design project to solve a specific energy problem. Finally, the cluster explores possible materials and technologies for a better energy future by presenting a range of novel and promising approaches for clean and affordable energy. The cluster gives students the opportunity to combine theoretical knowledge with hands-on experience, practice the understanding of scientific literature, and strengthen their oral and written presentation skills in the context of global energy.

The courses listed below count for the four Engineering majors, the Undergraduate Certificate in Energy and Environment, and the Energy Engineering Minor.

Courses

Energy 190FS: History of Energy Use and Power Generation (R, STS, CZ, SS)

Jonathon Free, Postdoctoral Associate

The use of energy throughout human history is explored, starting from the earliest beginnings of humanity to modern power generation. This course will consider the development of different primary energy sources over time, the history of various energy conversion and storage technologies, and the establishment of modern thermal sciences. A major focus of this course is the investigation of how these developments affected and still affect societal, economic, military, and technological change and growth. Understanding the historical trends related to energy use and power generation will allow for better informed prediction of humanity’s energy future. This course will combine engineering and social sciences to study various periods in human history, including Agricultural Revolutions, the Industrial Revolution, and Digital and Information Revolutions.

Engineering 95FS: Sustainable Energy Project: Engineering Design and Communication (STS, NS, SS)

Sophia Santillan, Assistant Professor of the Practice in the Department of Mechanical Engineering and Materials Science

Ann Saterbak Professor of the Practice in the Department of Biomedical Engineering and Director of the Duke Engineering First-Year Experience 

In this course, students learn and apply the engineering design process to solve an authentic energy design problem. A variety of local and international nonprofits, companies, medical facilities, and organizations pose real-world design questions related to sustainable energy. Students are placed on a team based on their project preference, working together for the duration of the semester to solve these questions.  The first half of the course is devoted to defining and researching a design problem, establishing design goals, brainstorming solutions, and using a decision matrix to select a solution. The second half of the course focuses on prototype development, iteration, and testing with the goal of meeting the established design goals. The final goal of the design project can be a functional device prototype or a new process or computer program. Students develop their communication skills by writing technical documents and giving oral presentations.

Engineering 95FS: Modern Energy Systems for a Changing World (STS, NS, SS)

Walter Neal Simmons, Gendell Family Associate Professor of the Practice, Professor of the Practice in the Department of Mechanical Engineering and Materials Science, Faculty Network Member of The Energy Initiative

Josiah Knight, Associate Professor of Mechanical Engineering and Materials Science, Faculty Network Member of The Energy Initiative

This course establishes a broad introduction to contemporary energy topics related to power generation, delivery, energy conversion, and efficiency. Both well-established and new methods of energy generation and conversion are discussed, focusing on electricity generation by fossil fuels, nuclear, solar, wind, hydropower, and alternative energy technologies. Energy consumption by space heating/cooling systems and transportation are included in the course. Finally, the course explores the effects of modern energy systems on the environment. The course includes case studies and readings on systems using both fossil and renewable energy sources.

Engineering 95FS: Emerging Materials and Technologies for Energy Future (STS, NS, SS)

Nico Hotz, Assistant Professor of the Practice in the Department of Mechanical Engineering & Materials Science and Faculty Network Member of The Energy Initiative

This course explores novel materials and technologies that have the promise to fundamentally transform the current energy infrastructure. With the ever-growing global demand for clean, efficient, and affordable energy, entirely new approaches are needed to solve the potential energy crisis humanity is facing. This course presents a broad introduction to a wide range of materials and technologies. Several faculty members from different engineering departments discuss emerging topics in materials science and engineering related to their research, including novel photovoltaic and photocatalytic materials, solar-thermal applications, thermoelectric power generation, batteries and other electrochemical systems, biomass-derived fuels, and computational materials science for discovery of novel materials. The understanding of these approaches is deepened through readings, case studies, and student presentations.

Faculty Director

Nico Hotz
  • Associate Director of Undergraduate Studies in the Department of Mechanical Engineering and Materials Science
  • Assistant Professor of the Practice in the Department of Mechanical Engineering & Materials Science
  • Faculty Network Member of The Energy Initiative
Office: 
303 Hudson Hall
Phone: 
(919) 660-5118

nico.hotz@duke.edu